数学必修四知识点合集15篇
在学习中,大家最熟悉的就是知识点吧?知识点就是掌握某个问题/知识的学习要点。还在苦恼没有知识点总结吗?下面是小编帮大家整理的数学必修四知识点,欢迎大家分享。
数学必修四知识点1平面向量
戴氏航天学校老师总结加法与减法的代数运算:
(1)若a=(x1,y1 ),b=(x2,y2 )则a b=(x1+x2,y1+y2 ).
向量加法与减法的几何表示:平行四边形法则、三角形法则。
戴氏航天学校老师总结向量加法有如下规律:+= +(交换律); +( +c)=( + )+c (结合律);
两个向量共线的充要条件:
(1) 向量b与非零向量共线的充要条件是有且仅有一个实数,使得b= .
(2) 若=(),b=()则‖b .
平面向量基本定理:
若e1、e2是同一平面内的两个不共线向量,那么对于这一平面内的任一向量,戴氏航天学校老师提醒有且只 有一对实数,,使得= e1+ e2
高考数学必修四学习方法
养成良好的课前和课后学习习惯:在当前高中数学学习中,培养正确的学习习惯是一项重要的学习技能。虽然有一种刻板印象的`猜疑,但在高中数学学习真的是反复尝试和错误的。学生们不得不预习课本。我准备的数学教科书不是简单的阅读,而是一个例子,至少十分钟的思考。在使用前不能通过学习知识解决问题的情况下,可以在教学内容中找到答案,然后在教材中考察问题的解决过程,掌握解决问题的思路。同时,在课堂上安排笔记也是必要的。在高中数学研究中,建议采用两种形式的笔记,一种是课堂速记,另一种是课后笔记。这不仅提高了课堂记忆的吸收能力,而且有助于对笔记内容的查询。
高考数学必修四学习技巧
养成良好的学习数学习惯
多质疑、勤思考、好动手、重归纳、注意应用。学生在学习数学的过程中,要把教师所传授的知识翻译成为自己的特殊语言,并永久记忆在自己的脑海中。良好的学习数学习惯包括课前自学、专心上课、及时复习、独立作业、解决疑难、系统小结和课外学习几个方面。
及时了解、掌握常用的数学思想和方法
中学数学学习要重点掌握的的数学思想有以上几个:集合与对应思想,分类讨论思想,数形结合思想,运动思想,转化思想,变换思想。
有了数学思想以后,还要掌握具体的方法,比如:换元、待定系数、数学归纳法、分析法、综合法、反证法等等。在具体的方法中,常用的有:观察与实验,联想与类比,比较与分类,分析与综合,归纳与演绎,一般与特殊,有限与无限,抽象与概括等。
数学必修四知识点2【公式一】
设α为任意角,终边相同的角的同一三角函数的值相等:
sin(2kπ+α)=sinα(k∈Z)
cos(2kπ+α)=cosα(k∈Z)
tan(2kπ+α)=tanα(k∈Z)
cot(2kπ+α)=cotα(k∈Z)
【公式二】
设α为任意角,π+α的三角函数值与α的`三角函数值之间的关系:
sin(π+α)=—sinα
cos(π+α)=—cosα
tan(π+α)=tanα
cot(π+α)=cotα
【公式三】
任意角α与—α的三角函数值之间的关系:
sin(—α)=—sinα
cos(—α)=cosα
tan(—α)=—tanα
cot(—α)=—cotα
【公式四】
利用公式二和公式三可以得到π—α与α的三角函数值之间的关系:
sin(π—α)=sinα
cos(π—α)=—cosα
tan(π—α)=—tanα
cot(π—α)=—cotα
【公式五】
利用公式一和公式三可以得到2π—α与α的三角函数值之间的关系:
sin(2π—α)=—sinα
cos(2π—α)=cosα
tan(2π—α)=—tanα
cot(2π—α)=—cotα
数学必修四知识点3一1.正弦、余弦公式的逆向思维
对于形如cos(α-β)cos(β)-sin(α-β)sin(β)这样的形式,运用逆向思维,化解为:
cos(α-β)cos(β)-sin(α-β)sin(β)=cos[(α-β)+β]=cos(α)
2.正切公式的逆向思维。
比如,由tαn(α+β)=[tαn(α)+tαn(β)] / [1-tαn(α)tαn(β)]
可得:
tαn(α)+tαn(β)=tαn(α+β)[1-tαn(α)tαn(β)]
[1-tαn(α)tαn(β)]=[tαn(α)+tαn(β)]/ tαn(α+β)
tαn(α)tαn(β)tαn(α+β)=tαn(α+β)-tαn(α)-tαn(β)
3.二倍角公式的灵活转化
比如:1+sin2α=sin2(α)+cos2(α)+2sin(α)cos(α)
=[sin(α)+cos(α)]2
cos(2α)=2cos2(α)-1=1-2sin2(α)=cos2(α)-sin2(α)=[cos(α)+sin(α)][cos(α)-sin(α)]
cos2(α)=[1+cos(2α)]/2
sin2(α)=[1-cos(2α)]/2
1+cos(α)=2cos2(α/2)
1-cos(α)=2sin2(α/2)
sin(2α)/2sin(α)=2sin(α)cos(α)/2sin(α)=cos(α)
sin(2α)/2cos(α)=2sin(α)cos(α)/2cos(α)=sin(α)
4.两角和差正弦、余弦公式的相加减、相比。
比如:
sin(α+β)=sin(α)cos(β)+cos(α)sin(β)……1
sin(α-β)=sin(α)cos(β)-cos(α)sin(β)……2
1式+2式,得到
sin(α+β)+sin(α-β)=2sin(α)cos(β)
1式-2式,得到
sin(α+β)-sin(α-β)=2cos(α)sin(β)
1式比2式,得到
sin(α+β)/sin(α-β)=[sin(α)cos(β)+cos(α)sin(β)]/ [sin(α)cos( ……此处隐藏10992个字……有这样一种说法:“如果你的数学成绩好,那么你的物理学习就不会有什么大问题.”按照这种说法,似乎学生的物理成绩与数学成绩之间存在着某种关系,我们把数学成绩和物理成绩看成是两个变量,那么这两个变量之间的关系是函数关系吗?
我们不能通过一个人的数学成绩是多少就准确地断定其物理成绩能达到多少,学习兴趣、学习时间、教学水平等,也是影响物理成绩的一些因素,但这两个变量是有一定关系的,它们之间是一种不确定性的关系.类似于这样的两个变量之间的关系,有必要从理论上作些探讨,如果能通过数学成绩对物理成绩进行合理估计,将有着非常重要的现实意义.
知识探究(一):变量之间的相关关系
思考1:考察下列问题中两个变量之间的关系:
(1)商品销售收入与广告支出经费;
(2)粮食产量与施肥量;
(3)人体内的脂肪含量与年龄.
这些问题中两个变量之间的关系是函数关系吗?
思考2:“名师出高徒”可以解释为教师的水平越高,学生的水平就越高,那么学生的学业成绩与教师的教学水平之间的关系是函数关系吗?你能举出类似的描述生活中两个变量之间的这种关系的成语吗?
思考3:上述两个变量之间的关系是一种非确定性关系,称之为相关关系,那么相关关系的含义如何?
自变量取值一定时,因变量的取值带有一定随机性的两个变量之间的关系,叫做相关关系.
1、球的体积和球的半径具有()
A函数关系B相关关系
C不确定关系D无任何关系
2、下列两个变量之间的关系不是
函数关系的是()
A角的度数和正弦值
B速度一定时,距离和时间的关系
C正方体的棱长和体积
D日照时间和水稻的亩产量AD练:知识探究(二):散点图
【问题】在一次对人体脂肪含量和年龄关系的研究中,研究人员获得了一组样本数据:
其中各年龄对应的脂肪数据是这个年龄人群脂肪含量的样本平均数.
思考1:对某一个人来说,他的体内脂肪含量不一定随年龄增长而增加或减少,但是如果把很多个体放在一起,就可能表现出一定的规律性.观察上表中的数据,大体上看,随着年龄的增加,人体脂肪含量怎样变化?
思考2:为了确定年龄和人体脂肪含量之间的更明确的关系,我们需要对数据进行分析,通过作图可以对两个变量之间的关系有一个直观的印象.以x轴表示年龄,y轴表示脂肪含量,你能在直角坐标系中描出样本数据对应的图形吗?
思考3:上图叫做散点图,你能描述一下散点图的含义吗?
在平面直角坐标系中,表示具有相关关系的两个变量的一组数据图形,称为散点图.
思考4:观察散点图的大致趋势,人的年龄的与人体脂肪含量具有什么相关关系?
思考5:在上面的散点图中,这些点散布在从左下角到右上角的区域,对于两个变量的这种相关关系,我们将它称为正相关.一般地,如果两个变量成正相关,那么这两个变量的变化趋势如何?
思考6:如果两个变量成负相关,从整体上看这两个变量的变化趋势如何?其散点图有什么特点?
一个变量随另一个变量的变大而变小,散点图中的点散布在从左上角到右下角的区域.
一般情况下两个变量之间的'相关关系成正相关或负相关,类似于函数的单调性.
知识探究(一):回归直线
思考1:一组样本数据的平均数是样本数据的中心,那么散点图中样本点的中心如何确定?它一定是散点图中的点吗?
思考2:在各种各样的散点图中,有些散点图中的点是杂乱分布的,有些散点图中的点的分布有一定的规律性,年龄和人体脂肪含量的样本数据的散点图中的点的分布有什么特点?
这些点大致分布在一条直线附近.
思考3:如果散点图中的点的分布,从整体上看大致在一条直线附近,则称这两个变量之间具有线性相关关系,这条直线叫做回归直线.对具有线性相关关系的两个变量,其回归直线一定通过样本点的中心吗?
思考4:对一组具有线性相关关系的样本数据,你认为其回归直线是一条还是几条?
思考5:在样本数据的散点图中,能否用直尺准确画出回归直线?借助计算机怎样画出回归直线?
知识探究(二):回归方程
在直角坐标系中,任何一条直线都有相应的方程,回归直线的方程称为回归方程.对一组具有线性相关关系的样本数据,如果能够求出它的回归方程,那么我们就可以比较具体、清楚地了解两个相关变量的内在联系,并根据回归方程对总体进行估计.
思考1:回归直线与散点图中各点的位置应具有怎样的关系?
整体上最接近
思考2:对于求回归直线方程,你有哪些想法?
思考4:为了从整体上反映n个样本数据与回归直线的接近程度,你认为选用哪个数量关系来刻画比较合适%某小卖部为了了解热茶销售量与气温
之间的关系,随机统计并制作了某6天
卖出热茶的杯数与当天气温的对照表:
如果某天的气温是-50C,你能根据这些
数据预测这天小卖部卖出热茶的杯数吗?
实例探究
为了了解热茶销量与
气温的大致关系,我们
以横坐标x表示气温,
纵坐标y表示热茶销量,
建立直角坐标系.将表
中数据构成的6个数对
表示的点在坐标系内
标出,得到下图。
你发现这些点有什么规律?
今后我们称这样的图为散点图(scatterplot).
建构数学
所以,我们用类似于估计平均数时的
思想,考虑离差的平方和
当x=-5时,热茶销量约为66杯
线性回归方程:
一般地,设有n个观察数据如下:当a,b使三点(3,10),(7,20),(11,24)的
线性回归方程是()
二、求线性回归方程
例2:观察两相关变量得如下表:
求两变量间的回归方程解1:列表:
阅读课本P73例1
EXCEL作散点图
利用线性回归方程解题步骤:
1、先画出所给数据对应的散点图;
2、观察散点,如果在一条直线附近,则说明所给量具有线性相关关系
3、根据公式求出线性回归方程,并解决其他问题。
(1)如果x=3,e=1,分别求两个模型中y的值;(2)分别说明以上两个模型是确定性
模型还是随机模型.
模型1:y=6+4x;模型2:y=6+4x+
解(1)模型1:y=6+4x=6+4×3=18;
模型2:y=6+4x+e=6+4×3+线性相关与线性回归方程小结1、变量间相关关系的散点图
2、如何利用“最小二乘法”思想求直线的回归方程
3、学会用回归思想考察现实生活中变量之间的相关关系
文档为doc格式